在本文中,我们研究了考虑基础图的扰动的聚集图神经网络(ag-gnns)的稳定性。 Agg-gnn是一种混合体系结构,在图上定义了信息,但是在图形移位算子上进行了几次扩散后,在节点上的欧几里得CNN对其进行了处理。我们为与通用Agg-GNN关联的映射运算符得出稳定性界限,并指定了该操作员可以稳定变形的条件。我们证明稳定性边界是由在每个节点上作用的CNN的第一层中过滤器的属性定义的。此外,我们表明聚集的数量,滤波器的选择性和稳定性常数的大小之间存在密切的关系。我们还得出结论,在Agg-gnns中,映射运算符的选择性仅在CNN阶段的第一层中与过滤器的属性相关。这显示了相对于选择GNN的稳定性的实质性差异,其中所有层中过滤器的选择性受其稳定性的约束。我们提供了证实结果得出的结果的数值证据,测试了考虑不同幅度扰动的现实生活应用方案中的ag-gnn的行为。
translated by 谷歌翻译
功率分配是无线网络中的基本问题之一,并且各种算法从不同的角度来解决这个问题。这些算法中的一个共同元素是它们依赖于信道状态的估计,这可能因硬件缺陷,嘈杂的反馈系统和环境和对抗性障碍而不准确。因此,对于输入扰动,这些算法的输出功率分配至关重要,在输入扰动的范围内是界限的界限的界限的程度。在本文中,我们专注于UWMMSE - 一种利用图形神经网络的现代算法 - 并通过理论分析和经验验证说明了界限能量添加输入扰动的稳定性。
translated by 谷歌翻译
在本文中,我们使用基于视觉的图形聚合和推理(VGAI)呈现了一种感知 - 动作通信环路设计。这种多代理分散的学习 - 控制框架将原始的视觉观测映射到代理操作,并通过相邻代理之间的本地通信提供帮助。我们的框架是由圆形卷积和图形神经网络(CNN / GNN)的级联实现,寻址代理级视觉感知和特征学习,以及群级通信,本地信息聚合和代理动作推断。通过联合训练CNN和GNN,结合了解图像特征和通信消息以更好地解决特定任务。我们使用模仿学习在离线阶段训练VGAI控制器,依赖于集中式专家控制器。这导致学习的VGAI控制器可以以分布式方式部署以进行在线执行。此外,控制器展示了良好的缩放性质,在较大的团队中具有较小的团队和应用程序的培训。通过多代理植入应用程序,我们证明VGAI产生与其他分散的控制器相当或更好地使用视觉输入模态,而不访问精确的位置或运动状态信息。
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
Periocular refers to the region of the face that surrounds the eye socket. This is a feature-rich area that can be used by itself to determine the identity of an individual. It is especially useful when the iris or the face cannot be reliably acquired. This can be the case of unconstrained or uncooperative scenarios, where the face may appear partially occluded, or the subject-to-camera distance may be high. However, it has received revived attention during the pandemic due to masked faces, leaving the ocular region as the only visible facial area, even in controlled scenarios. This paper discusses the state-of-the-art of periocular biometrics, giving an overall framework of its most significant research aspects.
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Multi-class ensemble classification remains a popular focus of investigation within the research community. The popularization of cloud services has sped up their adoption due to the ease of deploying large-scale machine-learning models. It has also drawn the attention of the industrial sector because of its ability to identify common problems in production. However, there are challenges to conform an ensemble classifier, namely a proper selection and effective training of the pool of classifiers, the definition of a proper architecture for multi-class classification, and uncertainty quantification of the ensemble classifier. The robustness and effectiveness of the ensemble classifier lie in the selection of the pool of classifiers, as well as in the learning process. Hence, the selection and the training procedure of the pool of classifiers play a crucial role. An (ensemble) classifier learns to detect the classes that were used during the supervised training. However, when injecting data with unknown conditions, the trained classifier will intend to predict the classes learned during the training. To this end, the uncertainty of the individual and ensemble classifier could be used to assess the learning capability. We present a novel approach for novel detection using ensemble classification and evidence theory. A pool selection strategy is presented to build a solid ensemble classifier. We present an architecture for multi-class ensemble classification and an approach to quantify the uncertainty of the individual classifiers and the ensemble classifier. We use uncertainty for the anomaly detection approach. Finally, we use the benchmark Tennessee Eastman to perform experiments to test the ensemble classifier's prediction and anomaly detection capabilities.
translated by 谷歌翻译
This paper is about the design of an automated machine to cut turbot fish specimens. Machine vision is a key part of this project as it is used to compute a cutting curve for the specimen head. This task is impossible to be carried out by mechanical means. Machine vision is used to detect head boundary and a robot is used to cut the head. Binarization and mathematical morphology are used to detect fish boundary and this boundary is subsequently analyzed (using Hough transform and convex hull) to detect key points and thus defining the cutting curve. Afterwards, mechanical systems are used to slice fish to get an easy presentation for end consumer (as fish fillets than can be easily marketed and consumed).
translated by 谷歌翻译
Chatbots are expected to be knowledgeable across multiple domains, e.g. for daily chit-chat, exchange of information, and grounding in emotional situations. To effectively measure the quality of such conversational agents, a model-based automatic dialogue evaluation metric (ADEM) is expected to perform well across multiple domains. Despite significant progress, an ADEM that works well in one domain does not necessarily generalize to another. This calls for a dedicated network architecture for domain generalization. To tackle the multi-domain dialogue evaluation task, we propose a Panel of Experts (PoE), a multitask network that consists of a shared transformer encoder and a collection of lightweight adapters. The shared encoder captures the general knowledge of dialogues across domains, while each adapter specializes in one specific domain and serves as a domain expert. To validate the idea, we construct a high-quality multi-domain dialogue dataset leveraging data augmentation and pseudo-labeling. The PoE network is comprehensively assessed on 16 dialogue evaluation datasets spanning a wide range of dialogue domains. It achieves state-of-the-art performance in terms of mean Spearman correlation over all the evaluation datasets. It exhibits better zero-shot generalization than existing state-of-the-art ADEMs and the ability to easily adapt to new domains with few-shot transfer learning.
translated by 谷歌翻译
Early recognition of clinical deterioration (CD) has vital importance in patients' survival from exacerbation or death. Electronic health records (EHRs) data have been widely employed in Early Warning Scores (EWS) to measure CD risk in hospitalized patients. Recently, EHRs data have been utilized in Machine Learning (ML) models to predict mortality and CD. The ML models have shown superior performance in CD prediction compared to EWS. Since EHRs data are structured and tabular, conventional ML models are generally applied to them, and less effort is put into evaluating the artificial neural network's performance on EHRs data. Thus, in this article, an extremely boosted neural network (XBNet) is used to predict CD, and its performance is compared to eXtreme Gradient Boosting (XGBoost) and random forest (RF) models. For this purpose, 103,105 samples from thirteen Brazilian hospitals are used to generate the models. Moreover, the principal component analysis (PCA) is employed to verify whether it can improve the adopted models' performance. The performance of ML models and Modified Early Warning Score (MEWS), an EWS candidate, are evaluated in CD prediction regarding the accuracy, precision, recall, F1-score, and geometric mean (G-mean) metrics in a 10-fold cross-validation approach. According to the experiments, the XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
translated by 谷歌翻译